
J. Fluid Mech. (2001), vol. 448, pp. 1–21. c© 2001 Cambridge University Press

DOI: 10.1017/S0022112001005109 Printed in the United Kingdom

1

Non-axisymmetric instability of centrifugally
stable stratified Taylor–Couette flow

By I R A D Y A V N E H1, J A M E S C. M CW I L L I A M S2

AND M. J E R O E N M O L E M A K E R2

1Department of Computer Science, Technion, Haifa 3200, Israel
2IGPP, University of California at Los Angeles, Los Angeles, CA 90095-1567, USA

(Received 2 February 2000 and in revised form 3 February 2001)

The stability is investigated of the swirling flow between two concentric cylinders in
the presence of stable axial linear density stratification, for flows not satisfying the
well-known Rayleigh criterion for inviscid centrifugal instability, d(Vr)2/dr < 0. We
show by a linear stability analysis that a sufficient condition for non-axisymmetric
instability is, in fact, d(V/r)2/dr < 0, which implies a far wider range of instability
than previously identified. The most unstable modes are radially smooth and occur
for a narrow range of vertical wavenumbers. The growth rate is nearly independent of
the stratification when the latter is strong, but it is proportional to it when it is weak,
implying stability for an unstratified flow. The instability depends strongly on a non-
dimensional parameter, S , which represents the ratio between the strain rate and twice
the angular velocity of the flow. The instabilities occur for anti-cyclonic flow (S < 0).
The optimal growth rate of the fastest-growing mode, which is non-oscillatory in time,
decays exponentially fast as S (which can also be considered a Rossby number) tends
to 0. The mechanism of the instability is an arrest and phase-locking of Kelvin waves
along the boundaries by the mean shear flow. Additionally, we identify a family of
(probably infinitely many) unstable modes with more oscillatory radial structure and
slower growth rates than the primary instability. We determine numerically that the
instabilities persist for finite viscosity, and the unstable modes remain similar to the
inviscid modes outside boundary layers along the cylinder walls. Furthermore, the
nonlinear dynamics of the anti-cyclonic flow are dominated by the linear instability
for a substantial range of Reynolds numbers.

1. Introduction
Fluid flow in an annulus between concentric rotating cylinders – generally known

as circular Couette or Taylor–Couette flow (Couette 1890; Taylor 1923) – is a classical
problem of hydrodynamic stability, and it has served as an important paradigm for
the dynamics of sheared flows. Many theoretical and experimental studies of this
problem have been made for fluids with uniform density (e.g. the classic treatise of
Chandrasekhar 1961; the experimental study of Andereck, Liu & Swinney 1986; and
the survey of Tagg 1994).

One might reasonably guess that this flow regime has become well understood, but
here we report on a qualitatively different type of instability. We examine Taylor–
Couette flow with a stable axial density stratification. This problem was first studied by
Thorpe (1966), who mainly investigated the analogy of the stratified Taylor–Couette
problem with the problem of rotating Bénard convection. No further studies on this
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problem were published until the work of Boubnov, Gledzer & Hopfinger (1995),
who investigated experimentally and theoretically (by a linear stability theory) the
case where the outer cylinder is at rest and only the inner cylinder is rotating. Their
main conclusions are that the stratification has a stabilizing effect on the flow, with
the critical Reynolds number for the onset of instability increasing with the strength
of stratification. The unstable mode is non-axisymmetric and oscillatory in time. The
stratification reduces the vertical wavelength of the most amplified modes at the onset
of instability. Hua, Le Gentil & Orlandi (1997) made an extensive numerical study of
this problem for conditions similar to the experiments of Boubnov et al. (1995) and
reproduce the main features seen in the experiments. They show that the main effect
of the axial stratification is a reduction of the height of the so-called Taylor vortices
and the formation of density layers of small vertical-to-horizontal aspect ratio. They
also show that the initial instability is axisymmetric, while non-axisymmetric motions
appear only at a slightly higher Reynolds number than the critical one. Further
studies of this problem are reported in Boubnov et al. (1996), Boubnov & Hopfinger
(1997), and Caton, Janiaud & Hopfinger (1999).

A common feature to all the stratified studies (except Thorpe 1966) is that the
outer cylinder is at rest. Recall the famous criterion for axisymmetric instability of an
inviscid fluid, due to Rayleigh (1916) and extended to stratified fluids and a baroclinic
circular vortex by Ooyama (1966):

d(Vr)2

dr
< 0, (1)

where V is the (azimuthal) velocity. When the outer cylinder is at rest, this condition
is obviously satisfied for any rotation rate of the inner cylinder. Indeed, Boubnov
et al. (1995) give an analytical solution for the inviscid limit with axisymmetric
perturbations about the mean Taylor–Couette flow. They note that this flow is always
unstable for sufficiently large vertical wavenumbers.

In addition to the importance of stratified Taylor–Couette as a realizable laboratory
flow, it also has value as a canonical example of the interplay between (planetary)
rotation, stable density stratification, velocity shear, and horizontal boundaries – all
of which are common ingredients for the large-scale, geophysical fluid dynamics in
the Earth’s ocean and atmosphere. We show below new modes of instability that are
clearly distinct from the more familiar barotropic, baroclinic, centrifugal/inertial, and
convective instabilities that can also arise from these ingredients. Furthermore, the
new instabilities are most important for intermediate values of the Rossby number,
which is a regime of particular interest since it coincides with the breakdown of the
quasi-static, geostrophic or gradient-wind, horizontal force balances that are pervasive
in large-scale geophysical flows (McWilliams et al. 1998).

Here we study stably stratified Taylor–Couette flow which is centrifugally stable
(i.e. does not satisfy (1)). No linear instabilities are known to exist in this regime
in the classical (unstratified) Taylor–Couette flow (e.g. Tagg 1994). The governing
equations are given in § 2. In § 3 we derive an upper bound on the growth rate
and then perform a linear stability analysis. We show that, in the inviscid limit, the
stratified Taylor–Couette flow is unstable if the angular velocity of the outer cylinder
is smaller in magnitude than that of the inner cylinder. The optimal growth rates
are substantial (compared to the upper bound) when the flow is nearly irrotational,
but they decay exponentially fast as the relative rotation rate is increased. Section 4
describes the mechanism of the instability, which is analogous to that studied by
Kushner, McIntyre & Shepherd (1998) for rotating, stratified, channel flow, and
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earlier by Satomura (1981a) for nonrotating stratified shallow-water channel flow.
In § 5 we present numerical results, including an apparently infinite family of more
weakly unstable modes. We also examine the effects of a small viscosity and in
§ 6 briefly discuss the significance of the linear instability in a realizable laboratory
environment. Concluding remarks are in § 7.

2. Governing equations
In cylindrical coordinates the Boussinesq equations for incompressible stratified

flow with uniform viscosity are

Ut + (U · ∇)U − V 2

r
= − 1

ρ̄0

Pr + ν

(
∆U − U

r2
− 2Vθ

r2

)
, (2)

Vt + (U · ∇)V +
UV

r
= − 1

ρ̄0r
Pθ + ν

(
∆V − V

r2
+

2Uθ

r2

)
, (3)

Wt + (U · ∇)W + g
ρ∗

ρ̄0

= − 1

ρ̄0

Pz + ν∆W, (4)

ρ∗ + (U · ∇)ρ∗ +W
dρ0

dz
= 0, (5)

1

r
(rU)r +

1

r
Vθ +Wz = 0, (6)

where (U,V ,W ) are the components of velocity in directions (r, θ, z), respectively, and
the density is decomposed into the background stratification and perturbations about
it, ρ(r, θ, z, t) = ρ̄0(z) + ρ∗(r, θ, z, t). For simplicity, the density diffusion term has been
neglected, since its action occurs only on times longer than the dynamical events of
interest here. We assume throughout this paper that the stable density stratification
is linear, so that the Brunt–Väisälä frequency (squared), N2 = −(g/ρ̄0)(dρ0/dz), is
constant.

The steady axisymmetric solution of (2)–(6) for the Taylor–Couette problem is
V = Ar+B/r, U = W = 0, with A = [r0V (r0)− r1V (r1)]/(r

2
0 − r2

1), and B = [r1V (r0)−
r0V (r1)]r0r1/(r

2
1−r2

0), where r0 and r1 denote the radii of the inner and outer cylinders,
respectively.

3. Linear stability analysis
Let Ω = V/r denote the angular velocity of the steady flow. The vorticity associated

with the flow is denoted Z = (1/r)(d/dr)(rV ). For the Taylor–Couette steady solution,
Ω = A + B/r2, and Z = 2A, but we first derive the general linearized equations for
axisymmetric barotropic mean flow and later apply them to this special case.

3.1. Linearized equations

We linearize (2)–(6) around the steady solution and obtain the equations for small

perturbations, (û, v̂, ŵ, p̂ = P ρ̄−1
0 , ĥ = −(dρ0/dz)

−1ρ∗). Here, ĥ is the perturbation in
the vertical displacement. The linearized equations are

Dû− 2Ωv̂ = −p̂r + ν

(
∆û− û

r2
− 2v̂θ

r2

)
, (7)
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Dv̂ + Zû = −1

r
p̂θ + ν

(
∆v̂ − v̂

r2
+

2ûθ
r2

)
, (8)

Dŵ +N2ĥ = −p̂z + ν∆ŵ, (9)

Dĥ = ŵ, (10)

1

r
(rû)r +

1

r
v̂θ + ŵz = 0, (11)

where D = ∂t+Ω∂θ is the material derivative. The boundary conditions at the cylinder
walls are (û, v̂, ŵ) = 0. We consider a domain that is infinite in the vertical direction,
and periodicity is assumed.

We restrict our analysis to the inviscid equations, ν = 0, with no-normal-flow
conditions at the walls, u = 0. Viscous effects are tested in § 5.4. Buoyancy diffusion
is neglected.

3.1.1. Energy equation and an upper bound on the growth rate

An equation can be written for the energy of the perturbations. It yields an upper
bound on their growth rate, and so provides a scale for the strength of instabilities.
We define the inner product of two real-valued functions f and g by

〈f, g〉 =

∫
V

fgdv, (12)

where V denotes an annular domain whose vertical extent is some integer number
of periods. The associated L2 norm is defined by ||f||2 = 〈f, f〉1/2. Define the (kinetic
plus potential) energy of the perturbations by

E = 1
2
(||û||22 + ||v̂||22 + ||ŵ||22 +N2||ĥ||22). (13)

If we take the inner products of (7)–(10) with û, v̂, ŵ and N2ĥ, respectively, and sum
up the terms, we obtain

Et + 〈(Z − 2Ω)û, v̂〉 = −(〈û, p̂r〉+ 〈v̂, (1/r)p̂θ〉+ 〈ŵ, p̂z〉), (14)

where the azimuthal advection terms vanish due to the periodicity and the axisym-
metry of Ω. Integration by parts of the right-hand side of (14) yields 〈∇ · û, p̂〉, where
û = (û, v̂, ŵ), and all boundary terms vanish due to the periodicity and boundary
conditions. Thus, the right-hand side vanishes by (11). We define the strain rate of
the mean flow by

S = rΩ′ = Z − 2Ω, (15)

and rewrite the energy equation as

Et = −〈Sû, v̂〉. (16)

Equation (16) provides an upper bound on the growth rate of E. Using

0 6 1
2
||û± v̂||22 = 1

2
(||û||22 + ||v̂||22)± 〈û, v̂〉 6 E ± 〈û, v̂〉, (17)

we obtain by (16) Et 6 ||S||∞|〈û, v̂〉| 6 ||S||∞E, where || · ||∞ denotes the maximum
norm, so that for Taylor–Couette flow ||S||∞ = 2|B|/r2

0. This yields

E 6 E0 exp (||S||∞t), (18)

where E0 is the energy at some initial time t = 0.
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3.2. Normal-mode form

Assume the perturbations to be of the normal-mode form,

(û, v̂, ŵ, p̂, ĥ)(r, θ, z, t) = (u, v, w, p, h)(r)ei(`θ+mz−ωt). (19)

Here, ` and m are the azimuthal and vertical wavenumbers, respectively, and ω =
ωr + iωi, where ωr represents the frequency of the perturbation oscillations and ωi is
the growth rate. For the domain we are considering, m may be any real number, but
` can only take on integer values. Nevertheless, we treat ` as a real number in the
derivations, and only refer to its being an integer when such a distinction becomes
important.

The linearized inviscid equations are

−iσu− 2Ωv = −p′, (20)

−iσv + Zu = − i`

r
p, (21)

−iσw +N2h = −imp, (22)

−iσh = w, (23)

1

r
(ru)′ +

i`

r
v + imw = 0, (24)

where primes denote derivatives with respect to r, and σ = ω − `Ω(r). From (20)–
(24) we derive a single equation for u, the perturbation in the radial velocity (see
Appendix A),

[G(N2 − σ2)r(ru)′]′ +
{
`

σ
[G(N2 − σ2)Z]′ − 2GΩZrm2 − 1

r

}
(ru) = 0, (25)

with G(r) = [`2(N2−σ2)− r2m2σ2]−1. As we are only interested in unstable modes, we
assume throughout that ωi is non-zero. Also, the case ` = m = 0 is excluded because
(24) and the boundary conditions then imply u = 0. Hence, G is bounded.

3.3. Non-dimensionalization and scaling

An important distinction is the sense of the differential rotation of the mean flow –
whether the steady mean flow is cyclonic or anti-cyclonic. We say that the flow is
cyclonic (anti-cyclonic) at r = r̄, for some constant r̄, if the absolute value of the
angular velocity Ω is an increasing (decreasing) function of r at r = r̄. If Taylor–
Couette flow is neither cyclonic nor anti-cyclonic, then it is either in solid-body
rotation (B = 0, where, as shown later, no instabilities exist) or the mean velocity
must be zero at r = r̄ (hence (1) is satisfied for r < r̄ and the flow is centrifugally
unstable). Note that all flows satisfying (1) are anti-cyclonic.

By definition, the cyclonicity of the flow is determined by the sign of (Ω2)′ at r = r̄.
Multiplying by the positive term r̄/(2Ω)2, we obtain a non-dimensional parameter,

S =
r̄Ω(r̄)′

2Ω(r̄)
=

−B
Ar̄2 + B

. (26)

S is the ratio between the strain rate and twice the angular velocity, and we call it the
relative strain rate. It can also be viewed as a Rossby number. In the framework of
an environment rotating with angular velocity Ω(r̄), S is the ratio between the relative
vorticity of the mean flow and the vorticity that is due to the rotating environment.
In this context we recognize |S | � 1 as the well-known quasigeostrophic limit.
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Based on these definitions we distinguish three different regimes for Taylor–Couette
flow: 1. Anti-cyclonic, centrifugally unstable: Equation (1) is satisfied,
S < −1, and A and B are of opposite signs.

2. Anti-cyclonic, centrifugally stable: Equation (1) is not satisfied,
−1 < S < 0, and A and B have the same sign.

3. Cyclonic, centrifugally stable: Equation (1) is not satisfied,
S > 0, and A and B are of opposite signs.

For example, when the outer cylinder is at rest, the flow is in the first regime. The
limiting cases of S = ±∞ and S = 0 were discussed above. A third borderline case
is S = −1, which corresponds to purely irrotational flow with A = 0. In our analysis
we shall assume S /∈ {−1, 0,±∞}, although results can be obtained for the bounding
cases by taking appropriate limits.

We choose r̄ = (r0 + r1)/2 to represent the characteristic length scale of the mean
flow. The characteristic angular velocity is Ω̄ = Ω(r̄), and the Froude number, F =
|Ω̄|/N, represents the ratio between rotation and stratification. The non-dimensional
gap width is denoted by ε = (r1 − r0)/r̄, and the non-dimensional angular velocity is
given by Ω̃ = Ω/Ω̄. The scaled azimuthal and vertical wavenumbers are given by

˜̀ = ε`, m̃ = εmr̄F. (27)

The remaining non-dimensional values are r̃ = r/r̄, y = r̃u/Ω̄r̄, and

σ̃ =
σ

˜̀Ω̄
, ω̃ =

ω − `Ω̄
˜̀Ω̄

, (28)

where we have subtracted the constant `Ω̄ from ω so that ω̃r = 0 will correspond
to modes that are non-oscillatory in time relative to the mean flow at r = r̄. Non-
vanishing ˜̀ is assumed because we are investigating non-axisymmetric motions.
Substitution into (25) yields

[G̃(1− ˜̀2σ̃2F2)r̃y′]′ +
{

2(S + 1)

εσ̃
[G̃(1− ˜̀2σ̃2F2)]′ − 4(S + 1)G̃Ω̃r̃m̃2

ε2
− ˜̀2

ε2r̃2

}
y = 0,

(29)

with G̃ = (1− ˜̀2σ̃2F2 − r̃2m̃2σ̃2)−1, where primes denote derivatives with respect to r̃.

3.4. Simplifications and analytical solutions

As we are unable to solve (29) analytically and generally, we make a regular pertur-
bation analysis with respect to a small parameter ˜̀2. That is, we assume that y can
be expanded in a series of the form y = y0 + y1

˜̀2 + . . . and solve for y0, y1, etc. Then,
we compute the growth rate based on our approximate y. An important difference
between this approach and the axisymmetric limit is that we can exploit the fact that
σ̃ remains bounded as ˜̀ → 0 in the centrifugally stable regime. This allows us to
obtain a relevant analytical, non-axisymmetric growth rate even in this limit.

3.4.1. Hydrostatic balance

To compute y0 we must neglect all ˜̀2 terms in (29). We do this in two steps.
First we assume ˜̀2σ̃2F2 � 1, and neglect only the O(˜̀2F2) terms. This is equivalent
to the approximation of hydrostatic balance, often used in models of oceanic and
atmospheric flow. This yields

(G̃hr̃y
′)′ +

[
2(S + 1)

εσ̃
G̃′h − 4(S + 1)G̃hΩ̃r̃m̃

2

ε2
− ˜̀2

ε2r̃2

]
y = 0, (30)
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with G̃h = (1− r̃2m̃2σ̃2)−1, where h subscripts denote that the hydrostatic assumption
has been employed. Only a single term which includes the azimuthal wavenumber is
left. If we neglect this term we obtain an equation whose two independent solutions
can be written explicitly in terms of modified Bessel functions. These solutions are
easier to obtain by first deriving a similar equation for v, as shown in Appendix B.
However, to avoid subsequent complications, we prefer to simplify by employing
a thin-gap approximation. In § 5 we show numerically the weak influence of this
simplification.

3.4.2. The thin-gap solution

We define a new non-dimensional independent variable, x = (r̃−1)/ε, which ranges
from − 1

2
(when r = r0) to 1

2
(when r = r1). Substituting x into (30), we obtain in the

thin-gap limit (ε→ 0),

(G̃tgy
′)′ − [4(S + 1)m̃2G̃tg(2SG̃tg + 1) + ˜̀2]y = 0, (31)

where primes denote derivatives with respect to x. Here, G̃tg = (1 − m̃2σ̃2
tg)
−1 is the

thin-gap limit of G̃h, with σ̃tg = limε→0 σ̃ = ω̃ − 2Sx. In the small-˜̀ limit (i.e. when
the remaining ˜̀2 term is neglected), the two independent solutions of (31) are given
explicitly by

y = (1 + ασ̃tg) e−2αx, (32)

where α = ±m̃√S + 1. (These are, as expected, the ε → 0 limits of the modified
Bessel function solutions whose derivation is sketched in Appendix B.) Imposing the
boundary conditions, y(± 1

2
) = 0, yields a quadratic equation for ω̃ with solutions

ω̃ = ±1

α

√
[tanh (α) + αS][coth (α) + αS]. (33)

Unstable modes occur when ω̃i is positive. In the centrifugally stable regimes, S > −1,
α is real, and the condition for instability is therefore

[tanh (α) + αS][coth (α) + αS] < 0. (34)

For cyclonic flow, S > 0, (34) clearly cannot be satisfied by any real α, so no
unstable modes exist in this limit. But for anti-cyclonic, centrifugally stable flow,
−1 < S < 0, we can always choose m̃ for which (34) is satisfied. In particular, the
choice αS = ±1 (i.e. m̃ = ±1/S

√
S + 1), yields an unstable solution, because for any

real α, | tanh (α)| < 1 < | coth (α)|. This solution is explicitly given by

ω̃i = −S
(

2e2/S

− sinh (2/S)

)1/2

≈ −2Se2/S . (35)

Note that ω̃i tends to zero exponentially fast as S → 0−. This implies that this
instability is absent in the quasi-geostrophic approximation, defined as a regular
perturbation expansion in S , as |S | → 0.

The optimal-ω̃i solution (i.e. ω̃i which is maximal over m̃ for a fixed S ) is greater
than the explicit solution of (35), but it tends to it exponentially as S → 0−. Similarly,
the corresponding optimal m̃ tends to ±1/S

√
S + 1 exponentially, and the range of

m̃ for which instabilities occur narrows exponentially. These results are shown in
figure 1(a, b).

The eigenmodes corresponding to the unstable solutions are very smooth. Fig-
ure 1(c, d) shows the eigenmodes corresponding to (35) for S = −0.5, and −0.2. The
eigenmodes are normalized to be real at x = 0. The real part is then an even function
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Figure 1. (a) The optimal ω̃i, in the limit of small ˜̀2 and thin gap, is compared to the explicit value
of (35) for a range of S . (b) The optimal m̃ is shown for a range of S . Also shown are the lower and
upper limits of m̃ for which unstable solutions exist. (c) Eigenmode, y(x) for S = −1/2. (d) y(x) for
S = −1/5.

of x, and the imaginary part is an odd function. The eigenmodes become smoother
for S closer to −1. For S → 0−, the amplitude of the eigenmode concentrates in two
‘humps’ of width O(|S |) near x = ±0.5, and there is an approximate 90◦ phase shift.
That is, for x ≈ 1

2
, y(x) ≈ −iy(−x). This structure, along with the other distinctive

properties of the instability, is interpreted in § 4.

3.4.3. An upper bound on ωi

Equation (18) provides an upper bound on the growth rate ωi. In the thin-gap
limit we can identify the absolute value of the strain rate with ||S||∞. Noting that the
growth rate of the (quadratic) perturbation energy is 2ωi, we obtain from (26),

|ωi| 6 |Ω̄S |. (36)
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3.4.4. Implications of the analytic solution

We now summarize the main conclusions for the limit ε, ˜̀ → 0 with moderate to
strong stratification (F not large compared to 1):

(i) Unstable solutions exist for all anti-cyclonic flows (S < 0). This includes, of
course, centrifugally unstable flows (S < −1, AB < 0; not addressed here) but also
all flows for which AB > 0 (hence, −1 < S < 0). A sufficient condition for instability
is thus (d/dr)(V/r)2 < 0.

(ii) No unstable solutions exist in this limit for cyclonic flows with S > 0.
(iii) The growth rate, ωi, is proportional to the scaled azimuthal wavenumber, ˜̀.

But its main dependence is on the relative strain rate, S , and it decays exponentially
fast as |S | becomes small, ωi → −2SΩ̄˜̀ exp (2/S ) as S → 0−. This growth rate is
2˜̀ exp (2/S ) times the upper-bound value of (36).

(iv) Unstable solutions exist for a band of vertical wavenumbers which narrows
exponentially fast as S → 0− around m̃ = 1/S

√
S + 1. This implies that, in the limits

S → −1 (no rotation) and S → 0 (pure rotation), the vertical scales of the unstable
perturbations are very small compared to the radial scale, even after division by the
Froude number. Away from these limits, the ratio of the vertical scale to the radial
scale is ∼ F (which is also the most common aspect ratio for quasigeostrophic flows).

(v) The unstable eigenmodes are radially smooth – so indeed the gap width is an
appropriate characteristic length scale for the perturbations – but they concentrate
near the boundaries for S → 0−.

3.4.5. Higher-order approximation

The solution derived in § 3.4.2 is only valid for small ˜̀. In order to obtain an
analytical estimate of the optimal ˜̀ and the corresponding optimal growth rate,
ωi, we must compute the next-order solution in the small-˜̀ expansion. Though far
too complicated in general, for the hydrostatic equation (30) this tedious procedure
(omitted for brevity) produces the following asymptotic estimate for the optimal ωi
in the limit of small |S |:

ω
asymptotic
i ≈ 2.03|Ω̄|√−Se2/S , S → 0−. (37)

In figure 2 (§ 5) the asymptotic optimal growth rate of (37) is compared to the
numerically computed value (obtained by optimizing ωi over ˜̀ and m̃) for realistic
parameters. It appears to provide a relevant approximation for the optimal growth
rate despite the many simplifications. Furthermore, the numerical results show that
near S = −1 the growth rate is about 0.315Ω̄, that is, more than 30% of the upper-
bound value (which by (36) is |Ω̄|). Hence, for a weak relative rotation rate, this
instability is comparable in strength to centrifugal instabilities, although its strength
decays exponentially for strong relative rotation rate.

3.5. Weak to moderate stratification

We now consider the case where F is not small compared to 1, and show that
under certain assumptions the optimal growth rate tends to zero linearly with the
stratification in the centrifugally stable regime (i.e. ωi ∝ 1/F as F → ∞). This is
consistent with the fact that no instabilities have been discovered in unstratified flows
in this regime (Andereck et al. 1986; Tagg 1994). This relationship is also exhibited
in our numerical computations.

In the weakly stratified regime, the relative azimuthal wavenumber is scaled
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F Vertical Azimuthal ωi

0.015 0.027 3.148 0.12271

0.15 0.270 3.187 0.12172

1.5 3.019 6.353 0.07269

15.0 31.03 56.87 0.00882

150.0 310.6 568.0 0.00088

Table 1. Optimal growth rates and corresponding vertical and azimuthal wavelengths (measured
in gap-width units) for S = −2/3, obtained numerically, with r̄ = 1 and ε = 0.1.

differently than in (27). We denote it by ˇ̀, defined by

ˇ̀ = ε`F = ˜̀F. (38)

With the remaining scaled variables unchanged, (29) becomes

[G̃(1− ˇ̀2σ̃2)r̃y′]′ +

{
2(S + 1)

εσ̃
[G̃(1− ˇ̀2σ̃2)]′ − 4(S + 1)G̃Ω̃r̃m̃2

ε2
− ˇ̀ 2

ε2r̃2F2

}
y = 0.

(39)

Note that F appears only in the last term on the left-hand side of (39). Also,
the small-˜̀2 solution holds for this regime as well in the limit ˇ̀→ 0.

Recall that, by (28), (38), ωi = ˇ̀Ω̄ω̃i/F . It follows that if ˇ̀ω̃i is uniformly bounded
as F →∞ then indeed the growth rate decays linearly with 1/F . For any finite F and

from (36), ˇ̀ω̃i is bounded, and, in the centrifugally stable regime, ω̃i itself is bounded
because ωi ∝ ˇ̀ as ˇ̀→ 0. If these bounds are in fact independent of F , as F → ∞,
then the growth rate decays linearly with 1/F in this limit. Though we cannot be sure
if this is indeed true, we point out that it can only be false if the last term on the
left-hand side of (39) remains ‘important’ even as F → ∞. The computational results
in § 5.2, plus the fact that no instabilities have been found for unstratified Taylor–
Couette flows, suggest that this is not the case. Thus, stratification, usually found to
be a stabilizing influence, is probably necessary for linear instability in this regime.
Table 1 illustrates the dependence of the optimal growth rate, ωi, and the perturbation
wavelengths, measured in gap-width units, on F for S = −2/3. The optimal vertical
wavelength is approximately proportional to F , with a slight transition near F = 1.
The optimal growth rate and corresponding azimuthal wavelength are insensitive to
F when F is small but approximately proportional to F when F is large. For large
F the restriction that the wavelengths must equal the circumference divided by an
integer precludes the large wavelengths required for optimal growth, unless ε is much
smaller. The dependence of the growth rate on stratification is examined in greater
detail in § 5.2.

4. Interpretation
4.1. Rotating, stratified channel flow

Consider the flow between two parallel infinite planar walls, normal to the x̄-axis
of a Cartesian coordinate system, (x̄, ȳ, z̄), where z̄ denotes the vertical coordinate.
Assume that the (viscous) flow is driven by an independent sliding of the walls in the



Stability of centrifugally stable stratified Taylor–Couette flow 11

ȳ-direction. The mean flow is then given by V = V (x̄), U = W = 0, where (U,V ,W )
denote the mean velocities in the (x̄, ȳ, z̄) directions, respectively, and V (x̄) is linear
and satisfies no-slip boundary conditions. Without loss of generality, V = 0 at the
origin, located at the centre of the gap. Let d denote the gap width, and assume stable
vertical density stratification, with constant N, and background rotation with angular
velocity Ω̄ around a vertical axis. Assume perturbations of the form

(û, v̂, ŵ, p̂, ĥ) = (u, v, w, p, h)(x̄) ei(`ȳ+mz̄−ωt), (40)

where w, p, h have the same meanings as before, but u, v are perturbations of the
Cartesian velocities U,V . Let σ = ω − `V , and introduce the scaling

ω̃ =
ω

d`Ω̄
, σ̃ =

σ

d`Ω̄
, ˜̀ = d`, m̃ = dFm, x =

x̄

d
, (41)

where F = |Ω̄|/N is the Froude number, and the relative strain rate is S = V ′(x̄)/2Ω̄.
Then, beginning with the equations for the perturbations in the Cartesian coordinates
and following a procedure analogous to that of Appendix A, we obtain the equation

[G̃(1− ˜̀2σ̃2F2)u′]′ +
{

2(S + 1)

σ̃
[G̃(1− ˜̀2σ̃2F2)]′ − 4(S + 1)G̃m̃2 − ˜̀2

}
u = 0, (42)

with G̃ = (1 − ˜̀2σ̃2F2 − m̃2σ̃2)−1, where primes denote derivatives with respect to x.
Equation (42) is isomorphic to the thin-gap equation for linear perturbations around
Taylor–Couette flow; if we now use the hydrostatic approximation to neglect O(˜̀2F2)
terms, we obtain (31).

A similar exercise shows that the analogue of this problem for a thin, uniform-
density layer (i.e. the shallow-water equations) version of this problem also yields
an isomorphism. However, because m̃ is no longer a freely chosen wavenumber, the
instability occurs only for a particular narrow range of layer thickness and a given S .
This problem, albeit in a non-rotating environment (S = −1), is studied theoretically
and numerically by Satomura (1981a, 1982). He observes instabilities for a sufficiently
large Froude number, which he interprets as unstable shear-modified gravity waves.

4.2. Kelvin-wave coupling

The instability described here has several distinctive properties, some of which are
further demonstrated in § 5. It requires stratification; it occurs only for anti-cyclonic
flow; the growth rate decays as an exponential function of 2/S; in the hydrostatic
limit it only occurs for a narrow band of vertical wavenumbers, although it is not very
sensitive to variations in the azimuthal wavenumber; it is quite insensitive to the gap
width; and the eigenfunctions are usually smooth, but for small |S | they concentrate
in two ‘humps’ near the boundaries, which are phase-shifted by nearly 90◦ relative to
each other.

The underlying mechanism of this instability is described in Kushner et al. (1998)
for the uniform-shear channel-flow problem. It is interpreted as an interaction between
two shear-modified Kelvin waves which are held in place by the mean flow. Since the
non-centrifugal Taylor–Couette instability is approximated well by the channel-flow
equation even for moderate gap width (§ 5), it is evident that the same mechanism
applies to Taylor–Couette flow. Indeed, this interpretation explains all the important
features of the instability: (a) Kelvin waves can only occur in the presence of strati-
fication; (b) anti-cyclonic shear is required to arrest the waves, since they propagate
cyclonically; (c) the given steady shear dictates a particular phase speed for the
Kelvin waves that would allow their arrest, which in turn implies a particular vertical
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wavenumber; and (d) the energy perturbation growth occurs as a result of the u, v
correlation between Kelvin waves at opposite boundaries, as implied by (16). This
explains the 90◦ phase shift and the exponential decay of the growth rate.

Similar cases of ageostrophic instabilities due to resonance of waves have been
observed and reported in the literature previously. Satomura (1981a, b) finds quali-
tatively similar behaviour for shallow-water shear flow that is unbounded or bounded
only on one side (with piecewise-linear mean velocity profiles). Griffiths, Killworth &
Stern (1982) study shallow-water gravity currents whose depth vanishes on both sides
of the flow. They demonstrate ageostrophic instabilities by a linear stability analysis
and laboratory experiments. Hayashi & Young (1987) analyse a similar problem with
varying rotation (β-plane) in the framework of a study on energy and momentum
transfer to and from unstable waves. They interpret the instabilities as a resonance
of shear-modified Kelvin and gravity waves. A similar view of instabilities due to the
interaction of waves and shear is given by Sakai (1989).

5. Computational results
Now we present results from computational solutions of the linear stability problem

in order to test the effects of a finite gap width, the restriction of the azimuthal
wavenumbers to integers, the dependence on the Froude number, and a finite viscosity.
Further, we find that there are many more unstable modes (probably infinitely many),
with countable radial ‘modenumbers’, in the case where the stratification is strong and
the azimuthal wavenumbers are not small (hence undetectable by the small-˜̀ analysis
in § 3.4). The numerical solver is based on a straightforward second-order-accurate,
finite-volume discretization of (25). For given physical parameters and wavenumbers
` and m, we search for eigenfrequencies ω for which the matrix representing the
discretized equation is singular. We do this by computing for a uniform (ω̃r, ω̃i)
grid the smallest (in absolute value) eigenvalues of the matrices, obtained by an
inverse power method. We then plot colour-maps of the results and (literally) look
for local ‘lows’. Once the vicinity of a singularity is thus spotted, we use a standard
minimization technique to home in on the precise eigenfrequency. Once an instability
is found, we can easily track it automatically as we slowly vary parameters.

The numerical computations in the viscous case were performed using the code
of Molemaker & Dijkstra (2000), who employ finite differences in the radial and
vertical directions and use an Arnoldi method for finding the most unstable modes.
The results of the two codes matched extremely well in inviscid comparisons.

5.1. Finite gap width, finite stratification, integer `

We first test the effects of the thin-gap approximation and of the hydrostatic assump-
tion. The growth rate, optimized with respect to ` and m, is computed for ε = 0.1,
0.2, and 0.3, with r̄ = 1, and plotted for a range of S values and compared with the
thin-gap hydrostatic solution of (31) (denoted ε = 0) in figure 2. We fix the strati-
fication N and the irrotational part of the flow, B = 1, and vary S by varying the
rotation rate, A. (As a result the Froude number varies proportionally to −1/S . We
use its value at S = −1 as the reference value.) For the results shown in figure 2, F is
0.1, which implies strong stratification (yet much weaker than is typical for large-scale
oceanic flows).

It is evident from figure 2 that, even for only moderately strong stratification,
the optimal growth rate is approximated very well by the hydrostatic equation.
Furthermore, the dependence on the finite gap width is quite weak, even for ε = 0.3,
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Asymptotic
ε = 0

–1/S

xi
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2.0

0.1
0.2
0.3

Figure 2. Optimal growth rate, ωi, for a range of S and several values of relative gap width, ε
(including the thin-gap limit denoted ε = 0). The nominal F is 0.1, except the thin-gap result which
is hydrostatic. The symbols indicate where the optimal ` of the ε = 0.2 solution is an integer. Here,
B, r̄ = 1. The solid line shows the approximate asymptotic growth rate of (37).

which corresponds to a wider gap than that of the experiments of Boubnov et al.
(1995). The symbols in the plot show where the optimal ` is an integer (ranging from
6 to 11) for the case ε = 0.2. In fact, the dependence of the growth rate on ` (for
optimal m) is so weak that, if we restrict ` to integer values, the change in figure 2
would be imperceptible. Note, by the way, that the instabilities vary smoothly as we
pass into the centrifugally unstable regime, S < −1.

5.2. Dependence on stratification

Next, we test our scaling estimate for the dependence of the optimal growth rate, ωi,
on the Froude number. Figure 3 shows the optimal ωi vs. F for S = −19/20 and
S = −2/3. Clearly, the growth rate varies essentially linearly with 1/F when F is
large compared to 1, but it is almost independent of F when the Froude number is
small. The azimuthal wavenumber behaves in a similar way, as predicted.

5.3. Large-˜̀ instabilities

In addition to the coupled Kelvin-wave instability, our numerical computations reveal
another family of instabilities with distinct characteristics. They exist only when the
stratification is strong and the scaled azimuthal wavenumber, ˜̀, is not too small.
Indeed, the small-˜̀ analysis implies that the Kelvin-wave instability described above
is the only unstable solution for ˜̀ → 0. So we call the newly found modes ‘large-˜̀

instabilities’.
This family of instabilities has many members, probably infinitely many, charac-

terized by integer radial ‘mode numbers’ associated with the shape of the eigenmode
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10–2

Reference

F

xi

10–1 100 101 102

10–3
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100

S = –19/20
–2/3

Figure 3. Optimal growth rate, ωi, vs. the Froude number for two values of S .
The solid line, provided for reference, is proportional to 1/F .

as shown below. We use k to denote the mode number, with, for convenience, k = 0
denoting the small-˜̀ (Kelvin-wave) instability mode. For the k > 0 modes, ωr 6= 0,
but they are nevertheless non-oscillatory in time with respect to some point (which
depends on k) that is still within the gap. Figure 4(a) shows the optimal ωi for the first
five modes and also, for comparison, for the k = 0 mode, all using the thin-domain,
hydrostatic equation. (We verified that, here too, the dependence on a finite gap
width and finite F is weak, albeit not as weak as for the small-˜̀ instability.) Though
still substantial, the growth rates are weaker for the large-˜̀ family. Furthermore, the
decay rate of ωi with decreasing |S | is exponentially faster. This is quantified in fig-
ure 4(b), which shows that the optimal growth rates appear to satisfy an approximate
asymptotic formula of the form

ω
asymptotic
i ∼ |Ω̄|k−1/4e3/S , k > 0. (43)

Figure 4(b) shows the optimal growth rates divided by the empirical asymptotic
formula (43) for the first five high-˜̀ modes. Also, we computed the first 22 modes for
S = −2/3, and the corresponding values are highlighted in figure 4(b) to show the
validity of the k−1/4 asymptotic approximation.

Figure 4(c, d) shows the third and fifth optimal-growth large-˜̀ eigenmodes for
S = −2/3, normalized such that the real and imaginary parts are highly correlated in
the right-hand region.† The mode number is determined by the number of extrema
in the correlated part. We computed the first 22 modes. No doubt, there are infinitely
many such modes, consistent with the conclusion of Satomura (1981a) and the large-`
matched asymptotics solution of Knessl & Keller (1992) to the related problem of
Griffiths et al. (1982). We found that ˜̀2, m̃2, grow approximately linearly with k, and
˜̀2/m̃2 is nearly independent of k. These behaviours can be understood by rewriting
(31) for a new dependent variable, z = m̃σ̃tg = −2m̃Sx. The equation depends only on
˜̀2/m̃2, not on each of the wavenumbers separately. The dependence on m̃ enters only

† Because of reflection symmetry about x = 0 in the thin-gap limit, the modes are pairwise
degenerate such that ωr → −ωr and y(x)→ y(−x) is also a mode.
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Figure 4. (a) Optimal growth rate, ωi, for the first five large-˜̀ modes, compared to the small-˜̀

mode (denoted k = 0) for a range of S . (b) Optimal ωi for the first five high-˜̀ modes, divided by
|Ω̄|k−1/4 exp3/S . The points marked by + signs show the values corresponding to the first 22 modes
at S = −2/3. (c) Eigenmode k = 3. (d) Eigenmode k = 5.

through the boundary conditions and has an extremely weak effect on the optimal
wavenumber ratio. A WKB analysis shows that for large k we must have k2 ∼ ˜̀2m̃2.
The main conclusion we draw from these computations is that the optimal ωi appears
to decay like k−1/4 for large k, as shown in figure 4(b).

Although we do not have a simple explanation for the dynamical mechanism of
the large-˜̀ instability, there are two strong indications that it is similar in nature
to the k = 0 mode: the exponential dependence of the growth rate on 3/S and the
fact that, if y is nearly real near one boundary, then it is nearly imaginary near the
other, as suggested by figure 4(c, d). Considering (31), we speculate that in parts of the
domain where G̃tg is negative and sufficiently small (particularly near the boundary),
˜̀ dominates in the second term, and the solution is a modified inertial–gravity wave.
But where G̃tg is large we again obtain a shear-modified Kelvin wave. The overall
solution is a combination of the two regimes.
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Figure 5. Optimal growth rates vs. the Reynolds number for S = −2/3, ε = 0.1.

5.4. Viscous effects

We test the robustness of our linear stability results to a finite viscosity. In particular,
we wish to verify that the instabilities persist when no-slip boundary conditions are
imposed. Using the code of Molemaker & Dijkstra (2000), we compute solutions for
the k = 0 instability with ε = 0.1, r̄ = 1, B = 2A = 1 (i.e. S = −2/3), with strong and
moderate stratification, N = 10 and 1 (F = 0.15 and 1.5), respectively. We use a grid
of 256 mesh points in the radial direction to resolve the boundary layers.

To facilitate comparisons to plane Couette flow (e.g. Bech & Andersson 1997) we
define the Reynolds number by

Re =
|S|[0.5(r1 − r0)]2

ν
=
|SΩ̄ |̄r2ε2

2ν
. (44)

We find that the flow is linearly unstable for Re greater than about 1000. The
dependence of the optimal growth rate on Re is shown in figure 5. The viscous
eigenmodes, shown in figure 6, are very similar to the inviscid ones, except in
boundary layers near the walls that become increasingly thin with Re.

6. Nonlinear evolution
The importance of the linear instability for the nonlinear dynamics of the flow

at supercritical values of Re needs to be tested. Even in the absence of linear
instabilities, it is expected that at sufficiently high Reynolds numbers Taylor–Couette
flow undergoes a transition to turbulence. Therefore, it is possible that the linear
instability could be obscured by finite-amplitude perturbation growth.

To investigate the relevance of the linear instability in the supercritical regime,
we integrate numerically the three-dimensional, nonlinear, time-dependent, viscous
Boussinesq equations (4) to examine the nonlinear equilibration of the linear in-
stability. The main results are summarized here, but a more complete report is in
Molemaker, McWilliams & Yavneh (2001). The computations are performed for a
strongly stratified, narrow-gap regime at S = −2/3.



Stability of centrifugally stable stratified Taylor–Couette flow 17

1.04

1.02

1.00

0.98

0.96

0 0.2 0.4 0.6 0.8 1.0

1.04

1.02

1.00

0.98

0.96

0 0.2 0.4 0.6 0.8 1.0

r

u v

1.04

1.02

1.00

0.98

0.96

0 0.2 0.4 0.6 0.8 1.0

1.04

1.02

1.00

0.98

0.96

0 0.2 0.4 0.6 0.8 1.0

r

w h

h/2pF h/2pF

Figure 6. Contour plots of a viscous solution with S = −2/3, F = 1.5.
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Figure 7. A horizontal cross-section of the nonlinear equilibrated flow is shown for Re ≈ 4000.
Horizontal velocities are shown as vectors, and vertical velocities are shown by grey-level, where
lighter/darker shades represent upward/downward motions.
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At the critical value of Re ≈ 1120 (somewhat higher than indicated in figure 5 due to
a finite diffusivity for density), the flow undergoes a supercritical pitchfork bifurcation.
A stationary, nonlinear solution is obtained which is stable for a significant range of
Re. In figure 7 such a solution is shown for Re ≈ 4000. Despite the strong nonlinearity
of this solution, it clearly resembles the linear eigenmode such as shown in figure 6.
It is distorted somewhat by nonlinear effects, most notably changing the phase
difference between upper and lower boundary Kelvin waves. At a slightly higher Re,
the stationary solution is destabilized by an oscillatory perturbation corresponding to
a supercritical Hopf bifurcation. The resulting stable limit cycle is very clearly driven
by the linear instability dynamics. Subsequent bifurcations eventually lead to fully
developed turbulent flow.

This scenario is radically different from that of cyclonic mean flow, where, in the
absence of linear instabilities, fluctuation growth occurs by finite-amplitude mechan-
isms, and the transition to turbulent flow is much more abrupt. Our computations
indicate that no such transition occurs in the range of Reynolds numbers for which
the linear instability dominates the dynamics of anti-cyclonic flow. These results show
that in realizable laboratory conditions the linear instability plays an essential role in
the dynamics of Taylor Couette flow.

7. Conclusions
We have investigated the flow between two concentric cylinders in a fluid with

stable axial stratification that does not satisfy the Rayleigh condition for axisym-
metric instability. For such flows no instabilities are believed to exist in the classical
(unstratified) Taylor–Couette flow. However, we find from both a linear stability
analysis and nonlinear integrations that all anti-cyclonic flows are linearly unstable
for sufficiently high Reynolds numbers. Thus, a sufficient condition for linear
instability is d(V/r)2/dr < 0, which implies a far wider regime of instability than
previously identified. The growth rates of the fastest growing mode are strong (over
30% of the upper bound) when the relative strain rate (Rossby number), S , is close
to −1, but they decay as an exponential function of 2/S as S → 0−. This is indicated
by analytical solutions obtained for flows whose azimuthal wavelengths are larger
than the gap width, and by numerical computations for a wide range of parameters.
The instability depends crucially on the stratification. The growth rate is essentially
proportional to the stratification when the latter is weak (Froude numbers F large
compared to 1), but it is independent of the stratification for small F . Strong in-
stabilities only occur for a particular narrow band of vertical wavenumbers, but
they are relatively insensitive to variations in the azimuthal wavenumber and quite
insensitive to changes in the gap width. The instability is analogous to that found
in uniform shear flow of a stratified fluid in a rotating channel, as analysed and
interpreted as an interaction between shear-modified Kelvin waves by Kushner et al.
(1998).

The radial length scale of the fastest-growing modes is the gap width, d. For small
F the azimuthal length scale is ∼ d, but the vertical length scale is ∼ Fd, i.e. similar
to the so-called Prandtl scaling that commonly occurs in quasi-geostrophic flows. For
large F both the vertical and azimuthal scales are ∼ Fd.

Although all the analytical results are obtained in the inviscid limit, we also
compute viscous solutions. We find that the instabilities persist in the presence of
a sufficiently small viscosity, and we show the dependence of the optimal growth
rate on the Reynolds number. Furthermore, nonlinear three-dimensional initial-value
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computations demonstrate unambiguously the central role of the linear instability
in the nonlinear dynamics of stratified, centrifugally stable Taylor–Couette flow (see
also Molemaker et al. 2001).

The instability analysed here is of a mostly unfamiliar type for laboratory and
geophysical fluid dynamicists, being neither barotropic, nor baroclinic, nor centrifu-
gal/inertial, nor convective. It has potentially great geophysical relevance in the regime
of intermediate Rossby and Froude numbers that characterize flows that occur on
intermediate scales (i.e. the mesoscales) between anisotropic, geostrophic, large-scale
motions and isotropic, unbalanced, small-scale motions. However, much remains to be
learned about this regime before its relevance can be fully assessed. For example, how
does the instability change for more general velocity shear profiles? How essential to
its occurrence is the presence of horizontal boundaries? How is it related, if at all,
to the elliptical instability of an unbounded flow with uniform vorticity and strain
rate at intermediate Rossby and Froude numbers (Miyazaki 1993; McWilliams &
Yavneh 1998)? How relevant is it to the breakdown of balanced flows and their fully
developed turbulence?
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Appendix A. Derivation of equation for u

To derive a single equation for the radial velocity perturbation, u, we first eliminate
h from (22), (23), obtaining

w = − mσp

N2 − σ2
. (A 1)

Next we eliminate w from (24), (A 1), obtaining

p = −i

[
1

r
(ru)′ +

i`

r
v

]
N2 − σ2

m2σ
. (A 2)

Substitution of (A 2) into (21) and isolation of v produces

v = iG[`(N2 − σ2)(ru)′ + σm2Zr2u], (A 3)

with G = [`2(N2−σ2)−r2m2σ2]−1. Finally, we use (A 2) and (A 3) to eliminate p and v
from (20). Dividing through by i and using (15), we obtain after simple manipulation
(first substituting (A 3) into (A 2))

[G(N2 − σ2)σr(ru)′]′ + G`(N2 − σ2)rΩ′(ru)′

+
{
`[G(N2 − σ2)Z]′ − 2GΩZrm2σ − σ

r

}
(ru) = 0. (A 4)

We simplify (A 4) slightly by using σ′ = −`Ω′ to combine the first and second terms.
Dividing through by σ we thus obtain (25).
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Appendix B. Equation for v and the small-˜̀ solution
To derive an equation for the azimuthal velocity perturbation, v, we first eliminate

u from (20), (21), obtaining

(σ2 − 2ΩZ)v + Zp′ − σ`p

r
= 0. (B 1)

Eliminating u from (21), (B 1), using the fact that Z is constant, yields

`Zv

r
+

(rσv)′

r
− m2σZp

N2 − σ2
− `p′

r
= 0. (B 2)

Eliminating p′ from (B 1), (B 2) yields

`[σ2 + Z(Z − 2Ω)]v

r
+
Z(rσv)′

r
−
(
`2

r2
+

m2Z2

N2 − σ2

)
σp = 0, (B 3)

which can be simplified, using (15) and σ′ = −`Ω′, to produce (after division by σ)

`σv

r
+
Z(rv)′

r
−
(
`2

r2
+

m2Z2

N2 − σ2

)
p = 0. (B 4)

Isolating p in (B 4) and substituting into (B 1) yields

[KrZ2(N2 − σ2)(rv)′]′

+
{
r[KZ`σ(N2 − σ2)]′ −K`2σ2(N2 − σ2) + (σ2 − 2ΩZ)

}
v = 0, (B 5)

with K = [`2(N2 − σ2) + m2r2Z2]−1. We next non-dimensionalize (B 5) and neglect
O(˜̀2) terms. Multiplying by m̃2/ε2Ω̄2 we obtain

v′′ +
v′

r̃
−
(
β2 +

µ2

r̃2

)
v = 0, (B 6)

where primes denote derivatives with respect to r̃ and

β =
2m̃(S + 1)

ε
, µ =

√
1− 4m̃2S(S + 1)

ε2
. (B 7)

The two independent solutions to (B 6) are

v = I±µ(βr̃), (B 8)

where I is the modified Bessel function. From (B 8) we can easily obtain the small-˜̀

solutions of p, and then u, using the scaled form of (B 4) (neglecting O(˜̀2) terms) and
(21).
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